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Capacity and Capability Computing using Legion
Anand Natrajan, Marty Humphrey, Andrew Grimshaw

Department of Computer Science, University of Virginia, Charlottesville, VA 22904
{anand, humphrey, grimshaw}@cs.virginia.edu

Abstract. Computational Scientists often cannot easily access the large amounts
of resources their applications require.Legionis a collection of software services
that facilitate the secure and easy use of local and non-local resources by
providing the illusion of a single virtual machine from heterogeneous,
geographically-distributed resources. This paper describes the newest additions
to Legion that enable high-performance (capacity) computing as well as secure,
fault-tolerant and collaborative (capability) computing.

1 Introduction

As available computing power increases because of faster commodity processor
faster networking, computational scientists are attempting to solve problems that
considered infeasible until recently. However, merely connecting large machines
high-speed networks is not enough; an easy-to-use and unified software environ
in which to develop, test and conduct software experiments is absent. For exam
users often are forced to remember multiple passwords, copy files to and
machines, determine where necessary compilers and libraries are on each ma
and choose which machines to use at particular times.

A metasystemis an environment in which users, such as scientists, can acc
resources in a transparent and secure manner. In a metasystem, users are not lim
geography, by non-possession of accounts, by limits of resources at one site or an
and so on. In short, as long as a resource provider is willing to permit a user to us
resource, there is no barrier between the user and the resource.

Legion is an architecture for a metasystem [1]. Just as an operating sy
provides an abstraction of a machine, Legion provides an abstraction of
metasystem. This abstraction supports the current performance demands of sci
applications. A number of scientific applications already run using Legion as
underlying infrastructure. In the future, scientists will demand support for n
methods of collaboration. Legion supports these expected demands as well.

We define capacity computing loosely as the ability to conduct larger
computational experiments either by expending more resources on a single proble
on multiple, independent problems. We definecapability computingto be new
mechanisms with which to conduct computational science experiments. This p
describes, from the viewpoint of a computational scientist, Legion’s unique suppor

This work was supported in part by the National Science Foundation grant EIA-997496
DoD/Logicon contract 979103 (DAHC94-96-C-0008) and by the NASA Information
Power Grid program.
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high-performance capacity and capability computing and describes how computat
scientists in a variety of disciplines are using Legion today.

2 Legion

The Legion project is an architecture for designing and building system services
present users the illusion of a single virtual machine [2]. This virtual machine provi
secure shared objects and shared name spaces. Whereas a conventional op
system provides an abstraction of a single computer, Legion aggregates a large nu
of diverse computers running different operating systems into a single abstraction
part of this abstraction, Legion provides mechanisms to couple diverse applica
and diverse resources, vastly simplifying the task of writing applications
heterogeneous distributed systems.

Each system and application component in Legion is an object. The object-b
architecture enables modularity, data and fault encapsulation and replaceability —
ability to change implementations of any component. Legion provides persis
storage, process management, inter-process communication, security and res
management services, long regarded as the basic services any operating system
provide. Legion provides these services in an integrated environment, not as dis
mechanisms such as Globus does [3]. Of particular importance is the integratio
security into Legion from the design through implementation. Legion supports P
[4], MPI [5], C, Fortran (with an object-based parallel dialect), a parallel C++ [6], Ja
and the CORBA IDL [7]. Also, Legion addresses critical issues such as flexibility a
extensibility, site autonomy, binary management and limited forms of fault detect
recovery. From inception Legion was designed to manage millions of hosts
billions of objects — a capability lacking in other object-based distributed systems

3 Capacity Computing with Legion

Legion can benefit scientific applications by delivering large amounts of resou
such as computing power, storage space and memory. Moreover, Legion provid
rich set of tools that make the access and use of these resources simple
straightforward. In particular, there are tools for running programs written using M
and PVM as well as programs that are parameter-space studies or sequential cod
§3.1-§3.4, we present some of Legion’s tools for running applications. In §3.5,
discuss scheduling in Legion briefly.

3.1 Legacy Applications

Legacy applications are those whose source code does not consist of any ca
Legion routines and does not utilise Legion objects and tools. Moreover, the so
code of the application may not be modified to target it to Legion, either because
unavailable or because its authors are unavailable or unwilling to make the nece
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changes. In all such cases, Legion neither mandates re-targetting the applicatio
denies access to metasystem resources.

A Legion user may run a legacy application on the distributed resources
metasystem by undertaking two steps (tool names are in parentheses):
1. Register the executable as a runnable class (legion_register_program )
2. Run the class (legion_run )

The first step results in the creation of arunnable class, analogous to an
executable in Unix or Windows. Registering an executable is an infrequent s
required only when the runnable class does not exist in Legion or when the execu
available to the user changes. A user is likely to execute the second step repeate
order to initiate, monitor and complete repeated runs of the application. The execu
registered with this class is called animplementation. Multiple executables, typically
of different architectures, may be registered with the same class, for example:

legion_register_program myClass /bin/whoami solaris
legion_register_program myClass /bin/ls sgi
The first command creates a classmyClass , which Legion tools can recognise a

a runnable class. The second parameter to the command is the Unix (or Windows
of an executable to be registered as an implementation formyClass . The third
argument indicates that the executable is a Solaris binary. When the second com
is executed, Legion recognises thatmyClass exists. It adds the binary/bin/ls as an
SGI implementation for the same class. Subsequently, if a user runsmyClass on a
Solaris machine, the executable corresponding to/bin/whoami will be executed on
that machine, whereas if the user runsmyClass on an SGI machine, the executabl
corresponding to/bin/ls  will be executed on that machine.

This example is trivial in the sense that/bin/whoami and/bin/ls are not high-
performance applications. Moreover, runningmyClass on different architectures is
likely to give very different results. However, the example illustrates that
registering legacy applications in Legion is simple and (b) no semantic requireme
imposed on the executables registered for different architectures.

Once a runnable class has been created in Legion, a user can run the cla
issuing alegion_run  command. The simplest form of the command is:

legion_run myClass

Here, the user implies that Legion can run an instance of the class on any res
present in Legion provided (a)myClass has implementations for the machine o
which the instance eventually runs (i.e., Solaris or SGI implementations), (b) the
is permitted to run on the machine and (c) the machine accepts the instanc
running. A more sophisticated run is:

legion_run -v -IN file1 -OUT file2 myClass convert

Here, the user indicates that she will observe the run in verbose mode (-v ), will
provide one Unix or Windows input file (-IN file1 ) and will receive one Unix or
Windows output file (-OUT file2 ) when running an instance ofmyClass with the
argumentconvert . Legion ensures that the input and output files are copied to a
from the machine on which the instance runs. In this form as well, the user
indicated that she prefers Legion to select the machine on which the instance
While this transparency in scheduling is used often, some users happen to be aw
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the machine on which they would like to run. Therefore, Legion permits direc
scheduling, wherein the user specifies the machine on which she wants to run:

legion_run -h /hosts/xyz -IN file1 -OUT file2 myClass convert
The details of how individual runs can be configured to suit a user’s requirem

are beyond the scope of this paper. It suffices to say that in keeping with the Le
philosophy of providing mechanisms on which policies can be constructed, there
many different strategies for executing a legacy application on distributed resou
These different strategies can be applied by choosing from a large number of op
available inlegion_run . The options are part of the standard documentation and m
pages available at each Legion installation [9].

3.2 MPI Applications

Many high-performance parallel applications are written using the Message Pas
Interface (MPI) library [5]. An MPI library provides routines that enabl
communication among various processes of a parallel application. MPI is a stan
i.e., it defines the interface of the routines. Different vendors of MPI may impleme
routine differently provided they adhere to the standard interface. Legion’s suppor
MPI is three-fold: Legion MPI, native MPI and mixed MPI.

Legion MPI. Legion can be viewed as another MPI vendor because it provi
implementations to standard MPI routines. If a user desires that an application u
MPI routines should run on a metasystem, he has to undertake three simple step
1. Re-link the object code of the application with Legion libraries (legion_link )
2. Register the executable as an MPI runnable class (legion_mpi_register )
3. Run the class (legion_mpi_run )

The first step ensures that Legion’s implementation of MPI routines are used w
running the application. Note that it is not necessary to change the source code o
application. The subsequent steps are similar to those for legacy applications.
options and operations of the actual commands are similar to those for registering
running legacy applications.

Native MPI. Some MPI applications are intolerant of high latencies for inte
process communications. Running such applications on distributed resources
degrade the performance of the application. Such applications are better support
running them on proximal resources to reduce communications latency. Moreo
many MPI implementations are tuned finely to exploit the architecture of underly
resources. Finally, the users of many MPI applications may be unwilling or unabl
re-link the application with Legion libraries. Therefore, Legion supports running M
applications in “native” mode, i.e., using other implementations of MPI, such
MPICH [10]. Native MPI support is similar to support for Legion MPI as well a
legacy applications. The steps a user has to undertake are:
1. Register the executable as a runnable class (legion_native_mpi_register )
2. Run the class (legion_native_mpi_run )

The benefits to the user are that no recompiling or re-linking is necessary to ac
remote resources in a transparent manner.
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Mixed MPI. Mixed MPI support is a blend of Legion MPI and native MPI. In
Legion’s mixed MPI support, an application is executed in “native” mode, but
application can access Legion’s objects, such as files. The steps required are:
1. Modify source code to initialize Legion library
2. Re-link the object code of the application with Legion libraries (legion_link )
3. Register the executable as a runnable class (legion_native_mpi_register )
4. Run the class (legion_native_mpi_run -legion )

The user has to modify the source code to initialize Legion with one call fro
within the application. Registering and running the class is similar to native MPI w
the addition of one option. Applications written to take advantage of mixed M
support can benefit in two ways: (a) since runs are executed in native m
performance for latency-intolerant applications does not suffer, and (b) runs can a
Legion objects and thus take advantage of the metasystem.

3.3 Mentat and Basic Fortran Support (BFS)

High-performance applications can be supported in Legion if they are written
Mentat or if they use the Basic Fortran Support. Mentat is a language similar to C
with a few additional keywords [6]. In Mentat, users may specify classes to be state
or persistent. The Mentat compiler identifies data dependencies within a program
constructs a dataflow graph to execute the program. Mentat provides a platform
users to write high-performance applications using a compiler constructed to mas
tedium of writing parallel programs. Legion’s support for Fortran programs is cal
BFS [11]. If users desire to write metasystem applications in Fortran, then Leg
requires that metasystem directives be embedded within Fortran comments. Curr
BFS support targets Mentat, but may not in future releases.

3.4 Parameter-Space Studies

Many metasystem applications are parameter-space (p-space) studies. In a p
study, a single program is called repeatedly with different sets of parameters. Mul
instances of the program may run concurrently with different sets of parameters. T
instances are completely independent of one another. Therefore, they can be sch
easily across geographically-distributed resources.

With Legion’s support, users may run their p-space studies orders of magni
faster than sequential. First, the application must be registered (see §3.1-§3.2).
the user must indicate which files must be mapped to the files required by an inst
Finally, the application must be run withlegion_run_multi . Legion runs each
instance of the application by mapping the proper files for the instance and cop
output files appropriately.legion_run_multi takes a number of options in order to
tailor the running of a p-space application for a user. This tool ensures that input
and output files are arranged such that the user can identify corresponding sets e
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3.5 Scheduling

In a metasystem, scheduling is the process of initiating runs on the best pos
resources. The general scheduling problem is NP-complete [12]. In addition,
parameters involved in making an optimal schedule are numerous and mut
dependent. Constructing a schedule may involve making decisions not limited to
the machine architectures for which a class has implementations, (b) spe
properties of a machine desired by the class (e.g., is it a queuing system? can
MPI jobs natively?), (c) communication bandwidthversusperformance penalty, (d)
current load and storage space on the machine, (e) permissions for this user to r
instance of this class on that machine, (f) allocation remaining for the user on
machine and (g) charges imposed by resource providers for running on their mac

Legion provides mechanisms to construct schedulers. Different schedulers
employ different algorithms to construct schedules from the list of available resour
Also, Legion permits users to specify resources directly for a run, the rationale b
that until good heuristics are developed to address all issues in scheduling, use
likely to be the best schedulers of their own jobs.

The general scheduling architecture in Legion is based on negotiation betw
resource providers and consumers [13]. The negotiation process preserves auto
of resource providers while satisfying the demands of the consumers. When a
starts a run, Legion encapsulates the demands of the user in the run reques
scheduler uses this request to construct one or more schedules for this run. Ne
queries the resource objects in turn to determine if they will accept the run.
resource objects may exercise the autonomy of the resource providers in accept
denying the run. If they accept, the runs are initiated on the chosen resources.

4 Capability Computing with Legion

A well-designed metasystem should not only satisfy current demands of users bu
anticipate and satisfy future demands. Currently, many applications require
performance. However, in the near future, metasystems such as Legion will be ab
deliver high performance to applications routinely by providing access to distribu
resources. We believe that at that point, users will look beyond high performanc
the defining feature of a metasystem. At that point, users’ demands may inc
heterogeneity, security, fault-tolerance and collaboration.

Heterogeneity is a fundamental design principle in Legion [14]. Typically,
running metasystem that uses Legion incorporates diverse resources — machin
different architectures running different operating systems consisting of differ
configurations and managed by different organisations. As in §3, users may reg
implementations of different architectures for their runnable classes. For par
applications, different instances started by a single run may run on heterogen
machines and communicate with one another as if they ran on homogeneous mac

Security was designed into Legion from the start [15]. Every Legion obje
whether it be a resource, a user, a file, a runnable class or a running instance,
security mechanism associated with it. The mechanisms provided by Legion
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general enough to accommodate different kinds of security policies within a sin
metasystem. Typically, the security provided is in the form of access control lists.
access control list indicates which objects can call which methods of an object.
fine-grained control mechanism enables users and metasystem administrators
sophisticated policies for different objects. The authentication mechanism curre
employed by Legion is a public key infrastructure based on key pairs. The keys
used to encrypt and decrypt messages securely as well as for signing certificates

Fault-tolerance can be implemented in a number of ways in Legion [16]. Ba
Legion objects are fault-tolerant because they can be deactivated at any time. W
Legion object is deactivated, it saves its state to persistent storage and frees me
and process state. Subsequently, it may be reactivated from its persistent state eit
the same or a different machine. If it is reactivated on a different machine, Leg
transfers its state to the new machine whenever possible. In addition, some objec
be replicated for performance or availability. Legion’s MPI implementation provid
mechanisms for checkpointing, stopping and restarting individual instances. Fin
Legion provides tools for retrieving intermediate files generated by leg
applications. Users can restart their instances using these intermediate files.

Legion enables new paradigms for collaboration between researchers condu
experiments that require using metasystem resources. We believe that collabora
an important goal for a metasystem. We expect that researchers should not be li
by geographical distance between one another as well as the resources they de
use. Accordingly, the ability to share objects via their permissions (access control
has always been a key design feature in Legion. In §4.1 and §4.2, we outline som
the methods by which users of a metasystem can collaborate.

4.1 Context Space

Legion provides a shared, virtual space to metasystem users. The shared, virtual
can be viewed as a truly distributed, global file system. This file system is organise
a manner similar to a Unix file system. In order to distinguish the global file syst
from the file systems present on individual machines, we call the global file syste
context space. Directories in context space are calledcontexts. A context called “/”
typically denotes the root of the context space. A context is an object that cont
other objects — contexts, machines, users, classes, files, etc. All users
metasystem, no matter where located physically, have the same view of the co
space. The analogue of this model in traditional operating systems is an NFS-mou
disk that is visible to all machines that share the mount, or a Samba-mounted
directory that is visible from a Windows machine.

The scope of Legion’s context space is much vaster than that of any of
predecessors. Distributed file systems are not novel. Legion’s implementation
predecessors in Network File System (NFS) [17], the Andrew File System (AFS)
and Extensible File System (ELFS) [19]. However, context space is truly distribu
and global; individual components may be physically located on machines that do
have anything in common except that they are part of the same metasystem.

Users may freely transfer files from their local file systems to context space.
example, one of the options to a tool calledlegion_cp permits users to copy a text
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file from their file system to context space. Likewise, registering a program effectiv
transfers an executable from a local file system to context space. A growing numb
tools available in Legion permit users to interface with context space in novel w
For example, a tool calledlegion_export_dir lets a user mirror an entire directory
in his local file system into Legion. Likewise, a Windows tool lets users brow
context space. When these two tools are used in conjunction, a user on one Win
machine may be able to view the contents of his collaborator’s directories on ano
Windows machine across the globe. Naturally, the permissions on the expo
directory and its components have to be set to permit the collaborator (and per
only the collaborator) to view them. However, setting the permissions is a matte
manipulating the access control lists of the objects. Legion provides tools
manipulating the access control lists of objects.

Tools for traversing context space include a suite of Unix-like command-l
tools, a point-and-click Web browser interface, an FTP tool, a Samba interface
Windows, an HTTP interface, and a Legion implementation of NFS for access
context space with standard Unix tools such asls andcat as well as with standard
system calls likeopen , read andwrite [20]. Using these tools, metasystem users c
collaborate by sharing and exchanging data in a manner familiar to them. Moreo
because of the possibility of setting fine-grained access controls, collaborators can
select the level of collaboration.

4.2 Sharing Runs

Legion’s object model is flexible enough to permit novel means of collaborat
among researchers, for example, sharing runs. In Legion, running instances of a
are first-class objects themselves. Therefore, as with any object in Legion, ac
control lists can be set for them to control permissions in interesting ways.

Suppose two researchers situated across a country wish to collaborate. The n
of their collaboration requires one of them to initiate a run which both obser
Currently, such a collaboration would be impossible unless both researchers were
to share an account on some machine. In Legion, neither researcher would ne
account on the machine on which the instance runs. Instead, both could acces
same object using Legion tools from their own machines.

Suppose a researcher constructs an application that is likely to be used wide
others in the same field. The researcher could register her executable as a run
class in Legion and set the permissions to allow anyone, a group of users or ana priori
known set of users to run instances of the class. Currently, the researcher would
to send or sell her executable to her fellow researchers. In the Legion model, she
control who runs her class when, where and how many times without physic
transporting her executable to the other researchers’ machines.

Suppose two mutually distrustful parties wish to collaborate on an experim
with one providing the executable and the other the data. Currently, suc
collaboration is impossible because either the executable or the data mus
transported to the other collaborator. However, in Legion, such a collaboratio
legitimate and possible. The collaborator with the executable would register
executable as a class in Legion and start an instance. Then he would se
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permissions on the instance allowing only the other collaborator to perform d
transfers but retaining permission to terminate the experiment. The sec
collaborator, after verifying that the permissions are indeed as outlined above, c
commence transferring data files. The application in question would have to be wr
in such a manner that it can wait until the data files become present. With that m
change in place, Legion can enable these mutually distrustful parties to collabora

Other means of collaboration will become evident as metasystems are used
widely and routinely. We expect the Legion model to be flexible enough
accommodate these collaboration efforts as they arise.

5 Conclusions and Current Status

The success of a metasystem depends on how easily and securely it permits us
perform their computations by collaborating and accessing available resources. A
component of a metasystem is software that presents users with abstractio
resources. Legion provides those abstractionsvia uniform, easy-to-use interfaces
These interfaces, ranging from tool-level to programming-level, greatly reduce
difficulties of computing in distributed, heterogeneous environments. The mechan
underlying the interfaces enable users to perform cross-machine, cross-archite
and cross-organisation computation. By enabling such computations on a large s
Legion supports capacity computing. Legion’s flexible and extensible object mo
supports capability computing by permitting novel methods of computation.

Legion consists of 350,000 lines of code and has been ported to Windows N
well as a large number of Unix variants, including Linux (Intel, Alpha), Unicos (T9
T3E), AIX (SP-2, SP-3), HPUX, FreeBSD, IRIX (Origin 2000) and Solaris (Enterpr
10000). Legion has been integrated with a large number of queuing systems, su
PBS, LSF, Codine, LoadLeveler and NQS. It has been deployed on mach
belonging to NSF-PACI, NASA IPG and the DoD MSRCs. Currently, Legion
running at over 300 hosts across the United States and Europe. Researchers
Legion currently are from a number of disciplines, including:

• Biochemistry (e.g., complib, a protein and DNA sequence comparison)
• Molecular Biology (e.g., CHARMM, a p-space study of 3D structures)
• Materials Science (e.g., DSMC, a Monte Carlo particle-in-cell study)
• Aerospace (e.g., flapper, a p-space study of a vehicle with flapping wings)
• Information Retrieval (e.g., PIE, a personalised search environment)
• Climate Modelling (e.g., BT-MED, a 2D barotropic ocean model)
• Astronomy (e.g., Hydro, a study of a rotating gas disk around a black hole)
• Neuroscience (e.g., a biological-scale simulation of a mammalian neural ne
• Computer Graphics (e.g., a parallel rendering of independent movie frames
We expect users to become more accustomed to using distributed resources,

in ways not anticipated today. Legion’s architecture holds the promise of satisfying
computational demands of the present as well as the future.
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